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Near-infrared (NIR) spectrometry and electronic nose (EN) data were used for on-line monitoring of
yogurt and filmjölk (a Swedish yogurt-like sour milk) fermentations under industrial conditions. The
NIR and EN signals were selected by evaluation of principal component analysis loading vectors
and further analyzed by studying the variability of the selected principal components. First principal
components for the NIR and the EN signals were used for on-line generation of a process trajectory
plot visualizing the actual state of fermentation. The NIR signals were also used to set up empirical
partial least-squares (PLS) models for prediction of the cultures’ pH and titratable acidity (expressed
as Thorner degrees, °T). By using five or six PLS factors the models yielded acceptable predictions
that could be further improved by increasing the number of reliable and precise calibration data. The
presented results demonstrate that the fusion of the NIR and EN signals has a potential for rapid
on-line monitoring and assessment of process quality of yogurt fermentation.
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INTRODUCTION

One of the main goals of industrial fermentation processes
is to achieve as high consistency and reproducibility as possible.
This is particularly important in the food industry, where
unchanged high product quality is expected by the consumers.
A way to suppress batch-to-batch variations would be a control
system able to monitor key process variables according to
prespecified trajectories. Unfortunately, there is a lack of rapid,
reliable, and robust monitoring techniques applicable under
industrial conditions. However, near-infrared (NIR) spectroscopy
and electronic noses (EN) were recently used to predict analytes
in microbial cultures via multivariate calibration models, thereby
making on-line trajectory control of important process variables
possible (1-3).

In the dairy industry, NIR spectroscopy is being widely used
for quality control of raw materials, intermediates, and final
products (4). Rapid analysis of milk for protein, fat, lactose,
and total solids by IR spectroscopy is employed as a standard
method by the Association of Official Analytical Chemists (5).
NIR spectroscopy is established as a very powerful method for
qualitative and quantitative analysis of dairy products of all kinds
(6-8). Also, electronic noses, an array of chemical gas sensors,
have been used in a vast number of applications, including
product quality classification in the food industry (9, 10).

It has previously been shown that fusion of NIR spectroscopy
and EN sensors with bioreactor probes can be successfully used

for laboratory monitoring of yogurt fermentation (11). This paper
describes how this multisensor system can be applied to real-
time production monitoring in a dairy under industrial condi-
tions. Yogurt fermentation and fermentation of a typical Swedish
yogurt-like sour milk (“filmjölk”) were studied. By following
the process trajectories and predicting basic culture parameters,
deviations in the process could easily be detected, which is
important for qualified and timely decision-making during
manufacture and for automatic control.

MATERIALS AND METHODS

Yogurt Fermentations. Fermentations were carried out in a 1000
L stainless steel tank in a dairy for regular production (Wapnö Mejeri
AB, Halmstad, Sweden). Pasteurized (15 s at 75°C) milk (fat content
) 3%) was filled into the tank and cooled to 43 or 23.5°C for yogurt
or filmjölk production. Filmjölk is a typical Swedish yogurt-like sour
milk fermented with mesophilic lactic acid bacteria. The most significant
difference is in lactose content; lactose during filmjölk fermentation
(unlike yogurt) is not fully hydrolyzed. The inocula were prepared from
commercial starter cultures of lactic acid bacteria (employingLacto-
coccus thermophilusandLactobacillus delbrueckiisubsp.bulgaricus
for yogurt fermentation andLactococcus lactis, Lactococcus cremoris,
Lactococcus diacetylactis, andLeuconostoc cremorisfor filmjö lk
fermentation). After inoculation, the broth was thoroughly mixed for a
short period, whereafter anaerobic, unstirred fermentations were carried
out for 5-7 h for yogurt or for 20-22 h for filmjölk.

Experimental Setup.The in-situ NIR probe was attached to a steel
holder top-mounted on the fermentation tank and immersed into milk
broth. The emission from the broth was sampled directly from the
headspace of the tank and passed through a separation trap before
entering the electronic nose at a flow rate of 80 mL/min using a built-
in membrane pump. The NIR spectrometer and EN output signals were
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connected via a MATLAB (MathWorks Inc., Natick, MA) bridge (using
Javalink/Gateway and Java runtime environment) to a G2 expert system
(Gensym Inc., Boston, MA), allowing versatile and flexible data
acquisition and processing (Figure 1). The system ran continuously
for 6 weeks to acquire a sufficient amount of data for calibration and
validation of models.

NIR spectra in the range between 400 and 2500 nm (steps of 2 nm)
were acquired using a NIR spectrometer (model 6500, FOSS NIRSys-
tems Inc., Silver Spring, MD). Thirty-two co-added reflectance scans
were taken every 5 min and referenced to 32 co-added reflectance scans
of air.

The EN was equipped with 10 MOSFET sensors (metal oxide
semiconductor field-effect transistors with catalytic gates of palladium,
iridium, or platinum operated at 140 or 170°C), 19 MOS sensors
(semiconductor metal oxide sensors of Figaro and FIS type; SnO2

sensors operated at 400°C), and an infrared CO2 sensor. As reference
gas process air was used. Gas samples were injected for 30 s every 15
min. Besides the sensor response, four additional signal parameters were
calculated during the first 15 s of the sampling phase (on-derivative,
on-integral) and during the first 15 s of the recovery phase (off-
derivative, off-integral). Thus, in total 150 (30 sensors× 5 signal
parameters) signal parameters were obtained from the EN at each
measurement cycle.

Data Preprocessing.Forward selection was used to find a suitable
subset of signals with high linear correlation to a process variable in
order to reduce the number of noncontributing signals. The selected
signals were scaled to unit variance by dividing them with their standard
deviations and centered by subtracting their averages (12). This
procedure was carried out using MATLAB software with a PLS_Tool-
box (Eigenvector Research, Inc., Manson, WA).

Because of different sampling intervals of NIR (5 min) and EN (15
min) signals, trajectory plots were updated every time a NIR signal
was acquired using the latest EN signal value.

Computational Methods.Principal component analysis (PCA) was
used to analyze the sensor responses of NIR and EN and to calculate
the score values of their first principal components (NIR-PC1 and EN-
PC1). These were subsequently used to construct trajectory plots. PCA
was performed by SIMCA-P software (Umetrics AB, Umeå, Sweden),
and for real-time score calculations the PCA function in MATLAB
/PLS_Toolbox was used.

A partial least-squares (PLS) approach was used for all calibrations
and predictions. PLS is a regression between the spectra of the
calibration samples (Xmatrix) and the off-line analyzed data of these
calibration samples (Ymatrix). The PLS procedure has been widely
discussed elsewhere (see, e.g., ref12). The key steps of the method
are data selection, application of the PLS algorithm, and determination
of the number of factors to be used in the model. PLS models were
calculated with SIMCA-P software (Umetrics AB). TheX matrix
contained spectral data in the range between 700 and 1900 nm (based
on forward selection by inspection of the loading profiles for the first
PLS factors; data not shown).

Reference Data.Reference data for pH were measured off-line by
a standard portable pH meter. Titratable acidity of the samples was
expressed in Thorner degrees,°T (13). The value is obtained by titrating
100 mL of the product and 200 mL of distilled water with 0.1 M NaOH
using phenolphthalein as indicator. Normal milk gives values of 15,
which corresponds to a lactic acid content of 0.135%.

RESULTS AND DISCUSSION

Data Preprocessing and Sensor Selection for Trajectories.
Trajectory plotting has been demonstrated as a convenient way
to monitor process variables in real time (14). Two sources of
experimental data have been used to generate process trajectory
plots: near-infrared spectroscopy data and electronic nose
signals. NIR spectra were obtained with the fiber-optic immer-
sion probe providing 1050 signals every measurement cycle.
Representative NIR spectra of yogurt and filmjölk fermentation
are presented inFigure 2. Spectra of yogurt are very similar to
those of filmjölk, which is considered an advantage during
simultaneous data processing. The explanation of this similarity
lies in the origin of NIR absorption bands, containing mainly
overtones and combination bands of the fundamental vibration
bands in the mid-infrared range (15). Unlike ultraviolet-visible
and infrared applications, the development of NIR applications
is almost totally dependent on statistics and chemometrics
because of the low intensity of the broad overlapping absorption
bands (16). Major differences in the spectra arise from changes
in highly absorbing components (water, light-scattering solids,
etc.), whereas information on chemical compounds (e.g., lactose,
galactose, and lactate) must be deconvoluted from minor
changes in the spectra by means of chemometric routines (6).

The electronic nose analyzed gases from the headspace of
the tank, giving 150 signals at every measurement. Typical time
courses of five randomly selected sensor responses for yogurt
and filmjölk fermentation are given inFigure 3. Of course,
development of volatile aroma compounds is fairly dependent
on the fermentation temperature. This fact explains the relatively
different sensor profiles acquired during yogurt and filmjo¨lk
fermentations.

To generate the process trajectory plots, a calibration data
set is required. The calibration was performed on two yogurt
and four filmjölk fermentations over a period of 2 weeks.
Because the instruments were running continuously for more

Figure 1. Experimental setup for on-line monitoring of yogurt and filmjölk
fermentation.

Figure 2. Visible and NIR reflectance spectra for yogurt (a) and filmjölk
(b) fermentation; t is fermentation time.
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than a month (including the validation period), both EN and
NIR signals must be corrected due to baseline drift during the
long-term operation. This was done using the procedure
described above.

To decrease the large amount of processed data and reduce
the impact of noncorrelating signals, preselection of the NIR
and EN signals is of great importance. In general, the diffuse
reflectance geometry mode in NIR spectroscopy usually offers
less information beyond 1900 nm than transmittance mode
measurements. Hence, the spectral information in reflectance
measurements as we used here is mostly restricted to below
2000 nm (17). The signals were selected from inspection of
the PCA loading plots, which show the importance of theX
variables (i.e., the NIR and EN signals) in the approximation
of theX matrix. The loading vectors of the NIR spectra for the
first principal component (PC) (77.6 and 95.5% explained
variance for yogurt and filmjölk, respectively) are plotted in
Figure 4. The spectral information modeled by the first PC can
be inferred from the corresponding loadings for the wavenum-
bers between 800 and 1800 nm, which were chosen for further
calculations, showing the highest contribution to the first PC.

The first PC loadings of the EN response signals are given
in Figure 5. Because the loading vectors for yogurt and filmjo¨lk
indicate the importance of the signals, the 16 most contributing
sensor response signals were chosen for the PCA.

Calibration and Validation of the Process Trajectory Plot.
Both NIRS and EN signals were used separately for PCA, and
scores of the first principal components were used to make a
trajectory plot for each fermentation batch.

The produced models were consequently evaluated on
external validation data sets (two and four batches for yogurt

and filmjölk, respectively).Figure 6 shows the trajectory plots
generated.

Figure 3. Relative response of five selected gas sensors during yogurt
(a) and filmjölk (b) fermentation: (9) PtPd140; (b) Pt175; (2) 2181;
(1 ) SP53; ([) SP42.

Figure 4. First principal component loadings for the whole set of NIRS
signals for yogurt (a) and filmjölk (b) fermentation.

Figure 5. First principal component loadings for the whole set of EN
response signals for yogurt (a) and filmjölk (b) fermentation: (/) selected
sensors.
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Although the trajectory plots for yogurt and filmjölk do look
quite different, they both describe the same changes that milk
undergoes during the fermentation. In particular, the milk protein
coaggulation region is noticeable. During this stage of the
fermentation, chemical and rheological properties change rap-
idly, which results in a significant alteration of the NIR signals
due to the formation of light-scattering colloid components (11).
These changes are mostly observed in the middle of the
trajectory plot (the diagonal region for yogurt and the horizontal
zone for filmjölk), where the dataset points are slightly distant
from each other.

As can be seen, all of the plots of the same kind exhibit the
same pattern. It would be possible to set boundaries or limits
for the trajectory plots, which define the area that represents
acceptable process conditions. A deviation of the plot outside
the area would indicate an unwanted process state.

Calibration of the pH and °T Prediction Models. Another
usage of the response data was to set up models for the
prediction of the two basic process parameters in yogurt
fermentation: pH value and titratable acidity (or Thorner degree,
°T). The prediction of pH and°T values is based on regression
models, which might cover changes also in other process
variables detectable by NIR (i.e., lactose/lactic acid concentra-
tion, degree of protein coagulation, etc.). PLS was used to
analyze the NIR data. One data set from the yogurt fermentation
was applied as a calibration set (35 samples) to predict the pH
and°T value of another data set (34 samples). A separate PLS
model was developed for filmjölk fermentation, regressing
spectral data with actual pH and°T values measured off-line
during the process. The sample set was divided into a calibration

set (246 samples from two fermentations) and a validation set
(244 samples from another two fermentations).

Selection of the spectral data chose the wavelength range of
700-1900 nm, because the inspection of the loading vectors
(described above) showed spectral response across this range
to be the most correlating.

Due to the limited access of reference data compared to the
large number of on-line data, a fitting and interpolation
procedure of the experimental data was applied to increase the
number of reference values for model development. The
procedure was carried out according to a sigmoidal Boltzmann
function:

In the calibration step, the values of the constants (A1, A2, x0,
and dx) were estimated by nonlinear curve fitting based on the
Levenberg-Marquardt algorithm. These were used to interpolate
pH and °T values corresponding to on-line sampled spectral
absorbance values.

Cross-validation was used to test the predictive significance
of each PLS factor in order to select the optimal number of the
factors to be used in the PLS models and avoid overfitting,
which results in a well-fitting model with little or no predictive
power. Nine parallel PLS models were compared where one to
nine PLS factors were used. Multiple correlation coefficient (R2),
standard error of correlation (SEC), cross-validatedR2 (Q2), and
standard error of prediction (SEP) were calculated for each
model (Table 1). The predictive ability of the models was
evaluated on the basis of a highQ2 and a low SEP value, giving
six PLS factors for the pH and°T models (yogurt fermentation).
The same procedure was repeated for the filmjölk fermentation
(data not shown). For pH, a five-factor model gave anR2 of
0.986 and aQ2 of 0.961. The same number of factors was chosen
for a °T model with R2 ) 0.989 andQ2 ) 0.977. Other
characteristics of the models selected for the evaluation are
presented inTable 2, listing the concentration range, the number
of samples used in the calibration, and basic statistical param-
eters.

Validation of the Prediction Models. It is demonstrated that
analytical NIR and/or EN data in combination with chemometric
evaluation have potential to become a useful tool in monitoring
of industrial yogurt manufacture. However, successful long-
term operation requires a sufficient amount of reliable calibration
data.

Figures 7 and 8 present the correlation plots of the actual
versus the predicted values for the pH and°T PLS models. The
data from the calibration yogurt fermentation and from both
validation fermentations are distributed evenly. The error in the

Figure 6. Trajectory plots generated from the first principal components
of preselected NIRS and EN signals: (a) yogurt fermentation (0 and O,
calibration datasets; 2 and 1, validation datasets); (b) filmjölk fermentation
(0, O, 4, and 3, calibration datasets; solid triangles pointing sideways,
[, and `, validation datasets).

Table 1. Optimization of Number of PLS Factors for pH and °T
Prediction Model for Yogurt Fermentation Samples

pH prediction model °T prediction modelno. of
factors R 2 SEC Q 2 SEP R 2 SEC Q 2 SEP

1 0.948 0.26 0.938 0.30 0.966 7.2 0.977 6.7
2 0.958 0.24 0.923 0.29 0.973 6.6 0.964 9.2
3 0.969 0.21 0.942 0.30 0.981 5.5 0.953 12.3
4 0.972 0.20 0.950 0.28 0.991 3.8 0.983 7.2
5 0.990 0.12 0.959 0.35 0.995 2.8 0.976 10.0
6 0.996 0.08 0.973 0.17 0.999 1.5 0.978 6.6
7 0.998 0.06 0.966 0.28 0.999 1.5 0.978 7.0
8 0.999 0.04 0.970 0.26 0.999 1.4 0.979 6.8
9 0.999 0.04 0.968 0.27 0.999 1.1 0.978 6.8

y )
A1 - A2

1 + e(x-x0)/dx
+ A2
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models can be attributed to variation in reference methods with
the portable pH and°T devices, the precision of which in the
complex yogurt media is low and subject to systematic errors.
Major discrepancies occur in the midpart of the fermentation
as shown in the correlation plot.

Correlation of the pH and°T models for the filmjo¨lk
fermentations is more scattered than those for yogurt. This can
probably be attributed to distorted interpolation. Due to a limited
number of off-line data from the process compared to the
extensive access of on-line data, the pH and°T predictions were
less accurate than would be possible with more off-line
sampling. However, samples from the boundary zones (around
initial and final pH and°T values) allow a precise prediction,
where the corresponding points are located close to the
correlation line. This part is also the decisive one from
manufacturing control considerations.

For efficient surveillance and control of yogurt fermentation
it is important to be able to monitor the change of pH and
possibly the progression and balance of the mixed anaerobic
lactic acid culture in relation to its utilization of lactose in the
milk. These parameters are key indicators of the quality of the
yogurt product and are decisive for its taste, aroma, and texture.
The industrial pH measurement is mostly performed in a
discontinuous manner because of signal drift and protein deposit
(18). Determination of titratable acidity is laborious; therefore,

on-line prediction of these parameters using NIR spectroscopy
is of interest. Consequently, it is attractive to predict these in
order to accurately terminate the culture at a well-defined
optimal and reproducible quality state.

In this paper exploitation of NIR spectroscopy for on-line
pH and titratable acidity prediction was explored. However,
there are numerous studies describing the applicability of NIR
spectroscopy for the analysis of other physicochemical param-
eters of milk and fermented milk products (6-8,19). Previous
results from our laboratory also have shown that NIR spectro-
scopy and EN have potential to monitor the main chemical
components (lactose, galactose, and lactate concentrations) and
physical characteristics (viscosity) on-line (11). These findings
can, as we have shown here, be implemented on a large scale
with refined modeling.

In the present study it has been shown that despite the
complexity of the yogurt and filmjölk matrices, changes in their
key process variables can be captured from the NIR spectra
and the EN signals. The information developed by one of the
chemometrics methods applied exhibits relatively high robust-
ness in performance over an extended process time and has the
potential to provide rapid on-line monitoring and assessment
of the process quality and state.

Table 2. Summary of Near-Infrared Calibration Results of pH and °T Models for Unmodified Yogurt and Filmjölk Samples

sample parameter N range regression model SEC SEP

yogurt pH 35 4.3−6.5 PLS: six factors, 700−1900 nm 0.08 0.17
yogurt °T 35 15−95 PLS: six factors, 700−1900 nm 1.5 6.6
filmjölk pH 246 4.1−6.5 PLS: five factors, 700−1900 nm 0.13 0.22
filmjölk °T 246 15−105 PLS: five factors, 700−1900 nm 5.1 7.7

Figure 7. Correlation between actual and NIR-predicted pH values for
yogurt (a) and filmjölk (b) fermentation: (0) calibration dataset; (b)
validation dataset.

Figure 8. Correlation between actual and NIR-predicted °T values for
yogurt (a) and filmjölk (b) fermentation: (0) calibration dataset; (b)
validation dataset.
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ABBREVIATIONS USED

NIR, near-infrared; EN, electronic nose; PC(A), principal
component (analysis); PLS, partial least-squares;Q2, cross-
validated multiple correlation coefficient;R2, multiple correlation
coefficient; SEC, standard error of correlation; SEP, standard
error of prediction;°T, Thörner degrees of titratable acidity of
dairy products.
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